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A stochastic model for the dynamics of a macroscopic or classical spin based on 
a classical generalized Lagrangian formalism is proposed. The model can be 
used to describe the evolution of the magnetic moment of superparamagnetic 
particles. In this sense, it is a generalization of the model proposed by Brown, 
allowing for fluctuations on the magnitudes of the magnetic moments of 
the particles. The corresponding covariant Fokker-Planck equation is also 
obtained. 
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1. I N T R O D U C T I O N  

It is well known that macroscopic systems undergo irreversible processes 
which are treated, on the microscopic level, by quantum or classical 
statistical physics, but on a more phenomenological or thermodynamic 
level they are treated as dynamical processes of complete sets of macro- 
scopic variables. In this second level of description, the dynamics can be 
either deterministic or stochastic, depending on the degree of precision 
adopted. The deterministic description can be viewed as the limit of the 
stochastic description, when the intensity of the fluctuations becomes 
negligible. On the other hand, in a stochastic description, the noise can 
have an external or internal origin. 

The system in which we are interested here is a cluster of N 
ferromagnetically coupled atomic spins si constituting a magnetic 
monodomain. The coupling among these microspins is assumed to be 
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sufficiently strong so that the quantum expectation value of the total spin, 
S= Y~i=l N Si) , can be treated as a macroscopic (or mesoscopic) variable. 
We will refer to S as a macrospin or classical spin. 

This situation is found, for example, in superparamagnetism. Super- 
paramagnetic particles are very fine particles of a ferromagnetic material 
containing a single ferromagnetic domain. The study of the dynamics of its 
magnetic moment It(t) is a very interesting problem in nonequilibrium 
classical statistical mechanics, whose conclusions may be verified by 
suitable experiments, e.g., magnetic ressonance, ~) M6ssbauer effect, ~2) etc. 
Because of their small size, or finite value of N, and the fact that T is dif- 
ferent from zero, the magnetic moment, which is proportional to S, shows 
a random time dependence. Therefore, the origin of the stochastic behavior 
is internal. When an external magnetic field is applied on a sample of such 
particles it shows a paramagnetic behavior, with a very big Curie constant, 
since the individual magnetic moments of the superparamagnetic particles 
are several orders of magnitude bigger than the Bohr magneton #B. 

The first stochastic theory proposed for it is due to Brown, ~3) who 
postulated a Langevin type equation obtained from the phenomenological 
equation of Gilbert (4~ by adding to it a noise field term, which means 
treating the noise as being of external origin. The weak point of this 
approach is that it is not suitable to allow for fluctuations on the 
magnitudes of It, which may be very important in case of very fine particles. 
All subsequent theoretical developments derive from Brown's work (3) and 
suffer from the same drawback. 

This paper is organized as follows. In Section 2 we obtain the deter- 
ministic equations of motion of a classical spin from a generalized 
Lagrangian formalism. The deterministic path obtained, corresponding to 
the situation of negligible fluctuations, coincides, in its asymptotic limit 
t ~ 0% with that obtained from phenomenological equations, such as the 
Gilbert equation (4) or the Landau-Lifshitz equation. (5) In Section 3 we 
introduce the fluctuations in analogy with Langevin's seminal work on 
ordinary Brownian motion, (6) but the equations of motion so obtained are 
stochastic differential equations of first order with multiplicative noise, 
which demands the choice of a specific version of stochastic calculus, the 
Ito or Stratonovich calculus. The corresponding covariant Fokker-Planck 
equation (FPE) is also obtained. In Section 4 we make some observations 
about future tasks planned for a future publication. 

2. T H E  D E T E R M I N I S T I C  M O T I O N  OF T H E  C L A S S I C A L  SPIN 

The basic point in writing down an equation of motion for a magnetic 
moment is to recognize that It is proportional to some angular momentum 
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and that the time derivative of the angular momentum of any system 
is equal to the torque applied on it. The phenomenological equations 
of Bloch, (7) Landau and Lifshitz, (51 and Gilbert (4) are well-known. We 
propose now an alternative way of obtaining an equation of motion for  
g(t). The central idea is to assume that the general form of the equation 
will not depend on the details of the origin of la(t). Therefore we write 
la = 7S, where the angular momentum S will be simulated by that of a 
rotating symmetric charged body, in the limit of zero moment of inertial 
and infinite angular velocity ~. By this trick we can write down a classical 
Lagrangian and derive the equations of motion from it. 

We begin by writing the Lagrangian of a rotating charged symmetric 
body, (s) 

L = �89 ~2 sin 2 0 q_l "2 ~Ilo +�89 (1) 

where I~ and/3  are the moments of inertia and 0, ~b, and ~ the usual Euler 
angles, and V(O, ok) represents the total potential energy, corresponding to 
all interactions of the system with its neighborhood. The generalized 
Lagrangian equations of motion read (s) 

dt - ~-~qi = Qi(t) (2) 

where the generalized coordinates qi are in the present case the Euler 
angles 0, ~b, and ~, and the generalized forces Qi contain the dissipative 
contribution to the total torque, which cannot be included in the 
Lagrangian. The total angular momentum is given by (9) 

J = -11 q~ sin el + I10el + I3(~ + ~ cos 0) c3 (3) 

where d3 is the unit vector along the symmetry axis of the rotating body, 
and e'l and ~; are the unit vectors, perpendiculars to ~3, used in the defini- 
tion of Euler angles. (s,9) 

We assume for Qi the form (9) 

Qe(t) = - - -  (4) 

derived from a Rayleigh dissipative function (s) 

~- = �89 + q~2 sin 2 0) + ~o(~) (5) 

where c~ is a dissipative constant and ~0(~) is a function to be defined 
below. In order to simulate the behavior of a classical spin, we take, for 
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these equations, the limit 11 --,0, 13 --~0, and ~)~  0% but maintaining 
I3~ = S(t)  = finite. In this limit we have 3 ~ S = S(t) Or(t), where 6r--- 03, 
and the equations of motion obtained by substituting Eqs. (1), (4), and (5) 
into Eq. (2) can be written as 

= - f i ( S -  SQ) =- f~ (6a) 

b(s)  
0 = - a ( S )  Vo • s~nO Vo - f i b (S ) (S -  So) etg 0 -= fo (6b) 

b(S) a(S) V~ + f ia (S ) (S -  So) ctg 0 
q~ = - sin----O Vo - sin2----- ~ ~ - f~ (6c) 

where 
In the derivation of these equations, we have assumed that 

Vo =- gV/O0, V 0 =- gV/O0, a(S) = ~/(cd + $2), and b(S) =- S/(~ 2 + $2). 

= ( s -  So) 2 (7) 

which may be justified whenever S(t) does not deviate too much from the 
equilibrium value So. The model therefore has two relaxation constants, 
one, a, for relaxation in direction (0, ~b) of S(t) and the other, fl, for relaxa- 
tion in the magnitude of S(t). 

For fit >> 1 these equations may be approximated by 

S = So (8a) 

bo 
0 = -ao Vo + s~nO V~ (8b) 

bo ao 
4 = - sin--O Vo - ~ V~ (8c) 

where ao=a(So) and bo=b(So); these equations are equivalent to the 
Gilbert equation 

-~- = 7tl x ~ tieff-- ~ Z ) (9) 

with It = yS and the effective magnetic field given by Herr = - ~  V/~B. In the 
S space spanned by {Sx, Sy, S~} the evolution of the macrostate of the 
system can be associated with the trajectory of a representative point S(t) = 
S(t) Or(t). The velocity of a representative point in the S space, 

dS . 
- ~  = S(t) er(t) + S(t)[O6o(t) + (b sin 00~(t)] (10) 

is also proportional to the total torque on the macrospin. 
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3. THE STOCHASTIC EQUATIONS 

The complete motion of the macrospin S(t) in S space is the combina- 
tion of the deterministic motion described in the last section with a random 
motion produced by the stochastic torque N(t) = N~(t) ~ + Ny(t) ~y + 
Nz(t) ez, whose Cartesian components will be assumed to be Gaussian, 
isotropic, orthogonal white noise, with intensity 2D, 

(N i ( t ) )  = O, (N i ( t )N j ( t ' ) )=ZD6~6( t - t ' )  (11) 

where ( - . . )  denotes an average over the realizations of the noise. 
It is convenient to write the stochastic equations of motion for S(t) in 

terms of the spherical coordinates (S, O, ~b), 

= f r  + Nr( t )  (12a)  

SO = Sfo + No(t) (lZb) 

Sq~ sin 0 = Sfo sin 0 + No(t ) (12c) 

where fr, fo, and f0 are defined in Eqs. (6). Since the spherical components 
of the noise Nr, No, and N o depend not only on the Cartesian components 
N~, Ny, and Nz, but also on S(t), Eqs. (12) are stochastic differential equa- 
tions with multiplieative noise. As usual in physics, we will interpret them 
in the Stratonovieh sense, (1~ because this approach has a physical motiva- 
tion: it is equivalent to starting all the calculations with each Cartesian 
component Ne(t) being colored noise, with finite correlation time rc, and 
taking, at the end, the limit rc--* 0. Using 

dx = er sin 0 cos ~b + e0 cos 0 cos ~b - d,0 sin ~b (13a) 

dy = ~r sin 0 sin ~b + e0 cos 0 sin ~b + d~o cos ~b (13b) 

ez = dr COS 0 -- dO sin 0 (13c) 

one can write the set of equations (12) in the general form 

dqv(t) = f~(q) dt + ~, g~j(q) dWj(t) (14) 
J 

where Greek subscripts (v) run over spherical components, ql = S, q2 = 0, 
q3 = ~b, and Latin subscripts (j) run over Cartesian components, x, y, z. 
The differential dWj(t) is the infinitesimal increment of a Cartesian compo- 
nent of the Wiener process, 

;o wj(t)  = Nj(C) at' (15) 
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and the matrix of guj coefficient is 

Q sin 0 cos ~b sin 0 sin ~b cos 0 \ 
g=  S lcos0cos~b S-lcos0sin~b - S  l s i n 0 )  (16) 

-S -~  sin ~b/sin 0 S-~ cos ~b/sin 0 0 

The associated FPE is given by (1~ 

8P 8 1 8 2 
8--7 = - ~  ~q~ [A~(q)P(q, t)] +5  ~ 8q~ Oq~ [B~u(q)P(q, t)] 

where the drift and diffusion coefficients are, respectively, given by (m/ 

(17) 

A~(q)= lira {Aqv)- f~(q)+Dg'Oq~J a,~o At ~ Squ guj (18a) 

Bv~(q)=(AqvAqu) 2D~g~j(q) gm(q) (18b) 
At J 

and Aqv-  q~(t + A t ) -  q~(t). Substituting Eq. (16) obtained above into 
(18a) and (18b), we get 

for the drift coefficients, and 

D 
Ao = fo + ~-5 ctg 0 (19a) 

A o =f~ (19b) 

2D 
Ar = fr +-~- (19c) 

t2i ~ B = 2D/S 2 (20) 
0 2D/S  2 sin 2 0 

for the diffusion matrix. 
The probability density P(q, t) = P(S, O, ~, t) is normalized as 

f P(S, O, q}, t) dS dO &b = 1 (21) 

We can put this FPE in a form manifestly covariant by introducing 
another probability density, P(S, O, O, t), so that P(S, t) = S 2 sin 0P(S, t), 
whose normalization condition is, evidently, 

f P(S, S 2 sin 0d0 dS 1 (22) t) dO 
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This probability density, P(S, t), becomes independent of 0 and ~b for the 
special case V=const .  In terms of P, the FPE can be written as a 
continuity equation, 

0P 
- -  = - V .  JP(S, t) (23) 
~t 

where V" is the divergence in S space, and the probability current is given 
by 

JP(S, t) = K(S) P(S, t) - D V/5(S, t) (24) 

The covariant drift vector, 

K = f re r  ~- S f o c  0 -~ S sin O f j ~  (25) 

is the velocity of a representative point in S space when the noise is absent, 
K/5 is the drift current, and - D  VP is the diffusion current. 

4. C O N C L U D I N G  R E M A R K S  

Using a generalized Lagrangian formalism for a symmetric charged 
rotating body, we have obtained, in a convenient limit, a set of stochastic 
equations of motion for a classical spin, which performs "Brownian 
motion" in S space. These equations reduce to the stochastic equations of 
Brown, (3) or to the deterministic equations of Gilbert (4~ or of Landau and 
Lifshitz, (5~ when the appropriate limits are taken. In the general case these 
equations form a set of nonlinear, coupled, stochastic differential equations 
which are too difficult to be formally integrated. Even the associated 
Fokker-Planck equation is too difficult, in the general case, for a formal 
analytical solution in terms of the potential V(O, ~) to be obtained. Two 
alternative numerical procedures may be followed: (i) to integrate the FPE 
for special potentials, obtaining the time evolution of the probability dis- 
tribution in S space; (ii) to integrate the stochastic equations for randomly 
selected realizations, a kind of Monte Carlo simulation. Results obtained 
along these lines will be presented in a future paper, when it will also be 
shown that detailed balance conditions (1~ are not satisfied by the stationary 
form of the FPE. 
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